Inserisci un problema...
Algebra lineare Esempi
Passaggio 1
Passaggio 1.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.2
Sposta .
Passaggio 1.3
Riordina e .
Passaggio 1.4
Sposta tutti i termini contenenti variabili sul lato sinistro dell'equazione.
Passaggio 1.4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.5
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Rappresenta il sistema di equazioni con una matrice.
Passaggio 3
Passaggio 3.1
Scrivi in notazione del determinante.
Passaggio 3.2
Scegli la riga o la colonna con il maggior numero di elementi . Se non ci sono elementi scegli una qualsiasi riga o colonna. Moltiplica ogni elemento nella riga per il proprio cofattore e somma.
Passaggio 3.2.1
Considera il grafico dei segni corrispondente.
Passaggio 3.2.2
Il cofattore è il minore con il segno cambiato se, sul grafico dei segni, agli indici è assegnata una posizione .
Passaggio 3.2.3
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 3.2.4
Moltiplica l'elemento per il suo cofattore.
Passaggio 3.2.5
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 3.2.6
Moltiplica l'elemento per il suo cofattore.
Passaggio 3.2.7
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 3.2.8
Moltiplica l'elemento per il suo cofattore.
Passaggio 3.2.9
Somma i termini.
Passaggio 3.3
Calcola .
Passaggio 3.3.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.3.2
Semplifica il determinante.
Passaggio 3.3.2.1
Semplifica ciascun termine.
Passaggio 3.3.2.1.1
Moltiplica per .
Passaggio 3.3.2.1.2
Moltiplica .
Passaggio 3.3.2.1.2.1
Moltiplica per .
Passaggio 3.3.2.1.2.2
Moltiplica per .
Passaggio 3.3.2.2
Sottrai da .
Passaggio 3.4
Calcola .
Passaggio 3.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.4.2
Semplifica il determinante.
Passaggio 3.4.2.1
Semplifica ciascun termine.
Passaggio 3.4.2.1.1
Moltiplica per .
Passaggio 3.4.2.1.2
Moltiplica .
Passaggio 3.4.2.1.2.1
Moltiplica per .
Passaggio 3.4.2.1.2.2
Moltiplica per .
Passaggio 3.4.2.2
Sottrai da .
Passaggio 3.5
Calcola .
Passaggio 3.5.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.5.2
Semplifica il determinante.
Passaggio 3.5.2.1
Semplifica ciascun termine.
Passaggio 3.5.2.1.1
Moltiplica per .
Passaggio 3.5.2.1.2
Moltiplica .
Passaggio 3.5.2.1.2.1
Moltiplica per .
Passaggio 3.5.2.1.2.2
Moltiplica per .
Passaggio 3.5.2.2
Somma e .
Passaggio 3.6
Semplifica il determinante.
Passaggio 3.6.1
Semplifica ciascun termine.
Passaggio 3.6.1.1
Moltiplica per .
Passaggio 3.6.1.2
Moltiplica per .
Passaggio 3.6.1.3
Moltiplica per .
Passaggio 3.6.2
Sottrai da .
Passaggio 3.6.3
Sottrai da .
Passaggio 4
Poiché il determinante non è , il sistema può essere risolto usando la Regola di Cramer.
Passaggio 5
Passaggio 5.1
Sostituisci la colonna della matrice di coefficiente che corrisponde ai coefficienti del sistema con .
Passaggio 5.2
Trova il determinante.
Passaggio 5.2.1
Scegli la riga o la colonna con il maggior numero di elementi . Se non ci sono elementi scegli una qualsiasi riga o colonna. Moltiplica ogni elemento nella riga per il proprio cofattore e somma.
Passaggio 5.2.1.1
Considera il grafico dei segni corrispondente.
Passaggio 5.2.1.2
Il cofattore è il minore con il segno cambiato se, sul grafico dei segni, agli indici è assegnata una posizione .
Passaggio 5.2.1.3
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 5.2.1.4
Moltiplica l'elemento per il suo cofattore.
Passaggio 5.2.1.5
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 5.2.1.6
Moltiplica l'elemento per il suo cofattore.
Passaggio 5.2.1.7
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 5.2.1.8
Moltiplica l'elemento per il suo cofattore.
Passaggio 5.2.1.9
Somma i termini.
Passaggio 5.2.2
Calcola .
Passaggio 5.2.2.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.2.2
Semplifica il determinante.
Passaggio 5.2.2.2.1
Semplifica ciascun termine.
Passaggio 5.2.2.2.1.1
Moltiplica per .
Passaggio 5.2.2.2.1.2
Moltiplica .
Passaggio 5.2.2.2.1.2.1
Moltiplica per .
Passaggio 5.2.2.2.1.2.2
Moltiplica per .
Passaggio 5.2.2.2.2
Sottrai da .
Passaggio 5.2.3
Calcola .
Passaggio 5.2.3.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.3.2
Semplifica il determinante.
Passaggio 5.2.3.2.1
Semplifica ciascun termine.
Passaggio 5.2.3.2.1.1
Moltiplica per .
Passaggio 5.2.3.2.1.2
Moltiplica .
Passaggio 5.2.3.2.1.2.1
Moltiplica per .
Passaggio 5.2.3.2.1.2.2
Moltiplica per .
Passaggio 5.2.3.2.2
Sottrai da .
Passaggio 5.2.4
Calcola .
Passaggio 5.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.4.2
Semplifica il determinante.
Passaggio 5.2.4.2.1
Semplifica ciascun termine.
Passaggio 5.2.4.2.1.1
Moltiplica per .
Passaggio 5.2.4.2.1.2
Moltiplica .
Passaggio 5.2.4.2.1.2.1
Moltiplica per .
Passaggio 5.2.4.2.1.2.2
Moltiplica per .
Passaggio 5.2.4.2.2
Somma e .
Passaggio 5.2.5
Semplifica il determinante.
Passaggio 5.2.5.1
Semplifica ciascun termine.
Passaggio 5.2.5.1.1
Moltiplica per .
Passaggio 5.2.5.1.2
Moltiplica per .
Passaggio 5.2.5.1.3
Moltiplica per .
Passaggio 5.2.5.2
Sottrai da .
Passaggio 5.2.5.3
Sottrai da .
Passaggio 5.3
Usa la formula per risolvere per .
Passaggio 5.4
Nella formula, sostituisci a e a .
Passaggio 5.5
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 6
Passaggio 6.1
Sostituisci la colonna della matrice di coefficiente che corrisponde ai coefficienti del sistema con .
Passaggio 6.2
Trova il determinante.
Passaggio 6.2.1
Scegli la riga o la colonna con il maggior numero di elementi . Se non ci sono elementi scegli una qualsiasi riga o colonna. Moltiplica ogni elemento nella riga per il proprio cofattore e somma.
Passaggio 6.2.1.1
Considera il grafico dei segni corrispondente.
Passaggio 6.2.1.2
Il cofattore è il minore con il segno cambiato se, sul grafico dei segni, agli indici è assegnata una posizione .
Passaggio 6.2.1.3
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 6.2.1.4
Moltiplica l'elemento per il suo cofattore.
Passaggio 6.2.1.5
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 6.2.1.6
Moltiplica l'elemento per il suo cofattore.
Passaggio 6.2.1.7
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 6.2.1.8
Moltiplica l'elemento per il suo cofattore.
Passaggio 6.2.1.9
Somma i termini.
Passaggio 6.2.2
Calcola .
Passaggio 6.2.2.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 6.2.2.2
Semplifica il determinante.
Passaggio 6.2.2.2.1
Semplifica ciascun termine.
Passaggio 6.2.2.2.1.1
Moltiplica per .
Passaggio 6.2.2.2.1.2
Moltiplica .
Passaggio 6.2.2.2.1.2.1
Moltiplica per .
Passaggio 6.2.2.2.1.2.2
Moltiplica per .
Passaggio 6.2.2.2.2
Sottrai da .
Passaggio 6.2.3
Calcola .
Passaggio 6.2.3.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 6.2.3.2
Semplifica il determinante.
Passaggio 6.2.3.2.1
Semplifica ciascun termine.
Passaggio 6.2.3.2.1.1
Moltiplica per .
Passaggio 6.2.3.2.1.2
Moltiplica .
Passaggio 6.2.3.2.1.2.1
Moltiplica per .
Passaggio 6.2.3.2.1.2.2
Moltiplica per .
Passaggio 6.2.3.2.2
Sottrai da .
Passaggio 6.2.4
Calcola .
Passaggio 6.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 6.2.4.2
Semplifica il determinante.
Passaggio 6.2.4.2.1
Semplifica ciascun termine.
Passaggio 6.2.4.2.1.1
Moltiplica per .
Passaggio 6.2.4.2.1.2
Moltiplica .
Passaggio 6.2.4.2.1.2.1
Moltiplica per .
Passaggio 6.2.4.2.1.2.2
Moltiplica per .
Passaggio 6.2.4.2.2
Somma e .
Passaggio 6.2.5
Semplifica il determinante.
Passaggio 6.2.5.1
Semplifica ciascun termine.
Passaggio 6.2.5.1.1
Moltiplica per .
Passaggio 6.2.5.1.2
Moltiplica per .
Passaggio 6.2.5.1.3
Moltiplica per .
Passaggio 6.2.5.2
Somma e .
Passaggio 6.2.5.3
Somma e .
Passaggio 6.3
Usa la formula per risolvere per .
Passaggio 6.4
Nella formula, sostituisci a e a .
Passaggio 6.5
Sposta il negativo davanti alla frazione.
Passaggio 7
Passaggio 7.1
Sostituisci la colonna della matrice di coefficiente che corrisponde ai coefficienti del sistema con .
Passaggio 7.2
Trova il determinante.
Passaggio 7.2.1
Scegli la riga o la colonna con il maggior numero di elementi . Se non ci sono elementi scegli una qualsiasi riga o colonna. Moltiplica ogni elemento nella riga per il proprio cofattore e somma.
Passaggio 7.2.1.1
Considera il grafico dei segni corrispondente.
Passaggio 7.2.1.2
Il cofattore è il minore con il segno cambiato se, sul grafico dei segni, agli indici è assegnata una posizione .
Passaggio 7.2.1.3
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 7.2.1.4
Moltiplica l'elemento per il suo cofattore.
Passaggio 7.2.1.5
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 7.2.1.6
Moltiplica l'elemento per il suo cofattore.
Passaggio 7.2.1.7
Il minore per è il determinante con riga e colonna eliminate.
Passaggio 7.2.1.8
Moltiplica l'elemento per il suo cofattore.
Passaggio 7.2.1.9
Somma i termini.
Passaggio 7.2.2
Calcola .
Passaggio 7.2.2.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 7.2.2.2
Semplifica il determinante.
Passaggio 7.2.2.2.1
Semplifica ciascun termine.
Passaggio 7.2.2.2.1.1
Moltiplica per .
Passaggio 7.2.2.2.1.2
Moltiplica .
Passaggio 7.2.2.2.1.2.1
Moltiplica per .
Passaggio 7.2.2.2.1.2.2
Moltiplica per .
Passaggio 7.2.2.2.2
Somma e .
Passaggio 7.2.3
Calcola .
Passaggio 7.2.3.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 7.2.3.2
Semplifica il determinante.
Passaggio 7.2.3.2.1
Semplifica ciascun termine.
Passaggio 7.2.3.2.1.1
Moltiplica per .
Passaggio 7.2.3.2.1.2
Moltiplica .
Passaggio 7.2.3.2.1.2.1
Moltiplica per .
Passaggio 7.2.3.2.1.2.2
Moltiplica per .
Passaggio 7.2.3.2.2
Somma e .
Passaggio 7.2.4
Calcola .
Passaggio 7.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 7.2.4.2
Semplifica il determinante.
Passaggio 7.2.4.2.1
Semplifica ciascun termine.
Passaggio 7.2.4.2.1.1
Moltiplica per .
Passaggio 7.2.4.2.1.2
Moltiplica .
Passaggio 7.2.4.2.1.2.1
Moltiplica per .
Passaggio 7.2.4.2.1.2.2
Moltiplica per .
Passaggio 7.2.4.2.2
Somma e .
Passaggio 7.2.5
Semplifica il determinante.
Passaggio 7.2.5.1
Semplifica ciascun termine.
Passaggio 7.2.5.1.1
Moltiplica per .
Passaggio 7.2.5.1.2
Moltiplica per .
Passaggio 7.2.5.1.3
Moltiplica per .
Passaggio 7.2.5.2
Somma e .
Passaggio 7.2.5.3
Sottrai da .
Passaggio 7.3
Usa la formula per risolvere per .
Passaggio 7.4
Nella formula, sostituisci a e a .
Passaggio 7.5
Sposta il negativo davanti alla frazione.
Passaggio 8
Elenca la soluzione al sistema di equazioni.